首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  国内免费   2篇
  2022年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2009年   5篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  1999年   1篇
  1993年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Design of bio-mimetic particles with enhanced vascular interaction   总被引:1,自引:0,他引:1  
The majority of particle-based delivery systems for the ‘smart’ administration of therapeutic and imaging agents have a spherical shape, are made by polymeric or lipid materials, have a size in the order of few hundreds of nanometers and a negligibly small relative density to aqueous solutions. In the microcirculation and deep airways of the lungs, where the creeping flow assumption holds, such small spheres move by following the flow stream lines and are not affected by external volume force fields. A delivery system should be designed to drift across the stream lines and interact repeatedly with the vessel walls, so that vascular interaction could be enhanced. The numerical approach presented in [Gavze, E., Shapiro, M., 1997. Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities. International Journal of Multiphase Flow 23, 155–182.] is, here, proposed as a tool to analyze the dynamics of arbitrarily shaped particles in a creeping flow, and has been extended to include the contribution of external force fields. As an example, ellipsoidal particles with aspect ratio 0.5 are considered. In the absence of external volume forces, a net lateral drift (margination) of the particles has been observed for Stokes number larger than unity (St>1); whereas, for smaller St, the particles oscillate with no net lateral motion. Under these conditions, margination is governed solely by particle inertia (geometry and particle-to-fluid density ratio). In the presence of volume forces, even for fairly small St, margination is observed but in a direction dictated by the external force field. It is concluded that a fine balance between size, shape and density can lead to EVI particles (particles with enhanced vascular interaction) that are able to sense endothelial cells for biological and biophysical abnormalities, mimicking circulating platelets and leukocytes.  相似文献   
2.
Genetic transformation of creeping bentgrass mediated by Agrobacterium tumefaciens has been achieved. Embryogenic callus initiated from seeds (cv. Penn-A-4) was infected with an A. tumefaciens strain (LBA4404) harboring a super-binary vector that contained an herbicide-resistant bar gene driven either by the CaMV 35S promoter or a rice ubiquitin promoter. Plants were regenerated from 219 independent transformation events. The overall stable transformation efficiency ranged from 18% to 45%. Southern blot and genetic analysis confirmed transgene integration in the creeping bentgrass genome and normal transmission and stable expression of the transgene in the T1 generation. All independent transformation events carried one to three copies of the transgene, and a majority (60–65%) contained only a single copy of the foreign gene with no apparent rearrangements. We report here the successful use of Agrobacterium for the large-scale production of transgenic creeping bentgrass plants with a high frequency of a single-copy transgene insertion that exhibit stable inheritance patterns.Abbreviations 2,4-D: 2,4-Dichlorophenoxyacetic acid - bar: Bialaphos resistance gene - GUS: -Glucuronidase - PPT: Phosphinothricin - ubi: Ubiquitin Communicated by J.M. Widholm  相似文献   
3.
Systemic disease of Cirsium arvense caused by Puccinia punctiformis depends on teliospores, from telia that are formed from uredinia, on C. arvense leaves. Uredinia result from infection of the leaves by aeciospores which are one main source of dispersal of the fungus. However, factors governing aeciospore spread, germination, infection, and conversion to uredinia and telia have not been extensively investigated. In this study, effective spread of aeciospores from a source area in a field was fitted to an exponential decline model with a predicted maximum distance of spread of 30 m from the source area to observed uredinia on one leaf of one C. arvense shoot. However, the greatest number of shoots bearing leaves with uredinia/telia was observed within 12 m of the source area, and there were no such shoots observed beyond 17 m from the source area. Aeciospore germination under laboratory conditions was low, with a maximum of about 10%. Temperatures between 18 °C and 25 °C were most favorable for germination with maximum germination at 22 °C. Temperature and dew point data collected from the Frederick, MD airport indicated that optimum temperatures for aeciospore germination occurred in late spring from about May 18 to June 20. Dew conditions during this period were favorable for aeciospore germination. A total of 122 lower leaves, 2 per shoot, on 61 C. arvense shoots were individually inoculated in a dew tent in a greenhouse by painting suspensions of aeciospores onto the leaves. Of these inoculated leaves, 47 produced uredinia within an average of 21.2 ± 6.9 days after inoculation. Uredinia were also produced, in the absence of dew, on 17 non-inoculated leaves of 12 shoots. These leaves were up to 4 leaves above leaves on the same shoots that had been individually and separately inoculated. Results of PCR tests for the presence of the fungus in non-inoculated leaves that were not bearing uredinia, showed that 44 leaves above inoculated leaves on 27 shoots were positive for the presence of the fungus. These leaves were up to 5 leaves above inoculated leaves on the same shoot. Uredinia production and positive PCR results on leaves above inoculated leaves on the same shoot indicated that aeciospore infection was weakly systemic. In other tests in which all leaves of plants were spray-inoculated with aeciospores, uredinia were produced by 10 days after inoculation and converted to telia and sole production of teliospores in about 63 days after inoculation. Successful systemic aeciospore infections in late spring would be expected to result in uredinia production in excess of a 1:1 ratio of aeciospore infections to uredinia and ultimately telia production in late summer. In this manner, systemic aeciospore infections would promote increased density of telia that lead to systemic infections of roots in the fall.  相似文献   
4.
马蹄金叶片中铜、铅含量及其对生理指标的影响   总被引:15,自引:0,他引:15  
研究了草坪草马蹄金对不同污染土壤的Cu、Pb含量.结果表明,马蹄金体内Cu含量(44.8mg.kg^-1)高于Pb含量(25.59mg·kg^-1).两种元素在体内的分布特征是根、茎>叶(P<0.05),并随着土壤内重金属含量增加而增加,但富集系数呈下降趋势;马蹄金对Cu的富集系数(0.784)高于Pb的富集系数(0.465).自然状态下不同程度Cu、Pb复合污染对马蹄金叶片细胞膜及细胞保护系统的影响结果表明,随着Cu、Pb浓度增加,叶片内叶绿素a、叶绿素a/b分别由1.610mg·g^-1 FW和4.100.下降到1.017mg·g^-1 FW和2.299;SOD活性先升高至106.494U·g^-1 FW,随后下降至86.258U·g^-1 FW;POD活性则逐渐增加;而细胞膜透性变化不明显。  相似文献   
5.
以马蹄金叶为研究对象,利用遮荫网设置光照梯度(透光率分别为:对照100%、76.19%、59.27%、38.09%),对其形态特征及总黄酮含量进行测定和分析.结果表明:(1)随着光照强度的降低,马蹄金叶片的长度、宽度及厚度均表现出先增大后减小的趋势,在76.19%透光率下达到最大值;叶柄长度随着光强的减弱而增长,叶片的形态并未发生显著变化.(2)光照强度对马蹄金叶片总黄酮含量有影响,透光率为76.19%时,马蹄金叶中总黄酮含量最高.分析表明76.19%的透光率有利于马蹄金的生长并能提高马蹄金叶中总黄酮的含量.  相似文献   
6.
野生和栽培马蹄金抗旱性比较及其抗旱机制初探   总被引:3,自引:0,他引:3       下载免费PDF全文
 为了鉴别野生和栽培马蹄金(Dichondra repens)的抗旱性,探讨其抗旱适应性的生理机制,对野生和栽培马蹄金进行了土壤水分胁迫处理,系统测定了野生和栽培马蹄金叶片内超氧化物歧化酶(SOD)、过氧化物酶(POD)、硝酸还原酶的活性和游离脯氨酸、可溶性糖、可溶性蛋白、NO2- /NO3-含量以及总DNA片断化程度。结果表明野生和栽培马蹄金在抗旱适应性上存在显著差异。随水分胁迫强度的增加,野生马蹄金叶片内抗氧化酶活性及其升高幅度,渗透调节物质的积累量及积累速度均高于栽培马蹄金,而叶片含水量下降的程度、DNA片断化程度低于栽培马蹄金,其中野生和栽培马蹄金叶片内NO2- /NO3-含量,硝酸还原酶的活性变化差异尤其显著,野生马蹄金叶片内的NO2- /NO3-含量、硝酸还原酶的活性明显高于栽培马蹄金,二者最大含量分别相差10和2.2倍。研究结果说明了野生马蹄金对干旱环境的适应性强于栽培品种;在干旱逆境下马蹄金叶片内的NO2 /NO3含量的变化在一定程度上可能反映了内源NO的变化,内源NO浓度的高低可能是野生和栽培马蹄金不同抗性的真正原因。  相似文献   
7.
苗族药马蹄金化学成分的研究   总被引:14,自引:0,他引:14  
从苗族药马蹄金(Dichondra erpen Forst.)全草中分离得到5个化合物,经波谱分析鉴定为委陵莱酸(tormentic acid,I)、尿嘧啶(uracil,2),茵芋甙(skimmin,3),甘油(glycerin,4)和N-(-N-苯甲酰基-L-苯丙氨酰基)-O-乙酰基-L-苯丙氨醇(N-(N-benzoyl-L-phenylalanyl-)-O-actyl-L-phenylalanol,5),以上化合物均首次从马蹄金中获得。  相似文献   
8.
The russet mite, Aceria anthocoptes (Nal.), is the only eriophyid that has been recorded on Canada thistle, Cirsium arvense (L.) Scop. It has been noted in several European countries and recently in the USA. With its apparent host specificity and because of the damage it causes to its host plant, A. anthocoptes is being studied as a potential candidate for classical biological control. The aim of the present study was to examine quantitative morphological traits in four populations of A. anthocoptes living on two infraspecific host plant taxa (C. arvense var. arvense and C. arvense var. vestitum) in two geographically separate areas of Serbia in order to test the hypothesis of absence of the possible host plant impact on mite morphology. MANOVA analysis revealed significant differences between populations from different localities in Serbia. Populations of A. anthocoptes inhabiting two thistle varieties in the vicinity of Belgrade differed significantly from mites inhabiting the same two host varieties in the vicinity of the town of Ivanjica. Canonical discriminant analysis showed that the trait which best discriminates the populations of A. anthocoptes is the number of dorsal annuli. It was not possible to ascribe morphological differences to the impact of the host plant.  相似文献   
9.
Cirsium arvense (L.) Scop. is a perennial herb indigenous to Eurasia that is now present throughout temperate regions of the world where it is considered one of the worst weeds of pastoral and agricultural systems. Classical biological control has been attempted in both North America (NA) and New Zealand (NZ). However, nearly 50 years after the first agent releases there are no indications of successful control. We review the status of the five agents deliberately released for control of C. arvense in NA and NZ, plus the species unintentionally introduced, and the occurrence of insects native to NA on C. arvense. We retrospectively evaluate C. arvense as a target weed, critique the agents selected for release, and contrast the different situations in NA and NZ. In retrospect, we see justification for the agents released in NA, but it is evident that these agents would not meet the more stringent host specificity requirements necessary to be released today. The failure of the program in NA is attributed to compromised safety, and lack of impact. Non-target impacts by one of the released agents, Rhinocyllus conicus, have raised safety concerns for native thistle plants. The other released agents either failed to establish, or if established, had no impact on the weed. In contrast, the situation in NZ is quite different because there are no related native thistles (Cardueae), and thus little chance of non-target impacts. Thus far, failure in NZ is attributed to lack of effectiveness due to non-establishment, or no impact, of released agents. In the past, the same agents that were released in NA were subsequently released in NZ, without considering whether or not these were the best choices. Thus, the past failure in NZ might be due to the previous lack of a NZ-specific approach to biocontrol of thistles in general and C. arvense in particular. A new approach taking into consideration the absence of native Cardueae has resulted in the release of agents more likely to be effective, and has potentially set NZ on track towards successful biological control of C. arvense, and other thistles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号